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ABSTRACT

This work presents a control methodology for compliant
motion in redundant robot manipulators. This control approach
takes advantage of the redundancy in the robot's degrees of freedom:
while a maximum six degrees of freedom of the robot control the
robot's endpoint position, the remaining degrees of freedom impose
an appropriate force on the environment. To verify the applicability
of this control method, an active end-effector is mounted on an
industrial robot to generate redundancy in the degrees of freedom. A
set, of experiments are described to demonstrate the use of this control
method in constrained maneuvers. The stability of the robot and the
environment is analyzed.

1. INTRODUCTION

Robotic manipulations fall into two categories:
unconstrained and constrained maneuvers [3,4]. In unconstrained
maneuvers, the robot moves freely in its workspace without
contacting the environment. In constrained maneuvers, such as
robotic deburring [7], the robot moves in its workspace in such a way
that the environment continuously exerts a dynamic or kinematic
constraint on the robot motion. If a position controller is used in
constrained maneuvers, the robot-environment interaction forces
are treated as disturbances and the controller rejects them, thus
causing more interaction forces. The consequences of this type of
interaction are saturation, instability and physical failure.
Therefore the interaction forces in constrained maneuvers must be
accommodated rather than resisted. Various methodologies for
development of compliant motion exist where the measurement and
feedback of the contact force is of paramount importance [9-14].
Reference 14 gives a thorough review and comparison of these
methodologies.

The manipulator is assumed to have two mechanical parts:
the primary manipulator and the secondary manipulator. The
primary manipulator is used solely as a positioning system. The
secondary manipulator, mounted on the endpoint of the primary
manipulator, imposes a desired force on' the environment (Figure
1). Even though the secondary manipulator holds the tool, it is not
meant to be used for maneuvering objects. In fact, the goal is to use
the secondary manipulator at a particular and fixed configuration
relative to the last link of the primary manipulator. Figure 2 shows
several configurations of the primary robot where the secondary
manipulator has a fixed orientation. If the joints of the secondary
manipulator are mechanically locked, the secondary manipulator
can be considered to be a rigid body connected to the last link of the
primary manipulator. If a regulator controller is placed on each
joint of the secondary manipulator, the compliance of the secondary
manipulator can be governed by adjusting the loop gains on the servo
motors. If the loop gains on the servo motors are small, the system
exhibits compliancy in response to forces imposed at its endpoint. If
the loop gains are large, the secondary manipulator is very stiff
electronically.
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This paper describes a stable control method for development
of compliant motion on the secondary manipulator. Sections 2 and 3
describe the unstructured dynamic model of the system. Sections 4
and 5 are dedicated to the control and stability criterion. Section 6
proves the integrity of the control approach via a set of experiments.
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Figure 1: Various configurations of the primary m?nipulatqr
where the secondary manipulator has a fixed orientation relative
to its base

2. UNSTRUCTURED MODELING OF THE SECONDARY
MANIPULATOR

The primary manipulator is assumed to have a trajectory
controller for positioning its endpoint (i.e. the base of the secondary
manipulator). Several linear and nonlinear control methods can be
used to develop this trajectory controller. Hcwever, the concern here
is the control and modeling of the secondary manipulator. The
secondary manipulator motors are assumed to have velocity
controllers since most servo motors have rate controllers. In
general, a robotic system with a velocity controller has a velocity that
is a dynamic function of its input vector!, e, and of the force, d,
imposed at its endpoint. The velocity controller for the sec'ondary
manipulator is assumed to have zero velocity input in the
neighborhood of a particular configuration of the active end-eﬁ'ect.o?.
Thus, the active end-effector is not used for maneuvering parts, but is
used at a particular known configuration. Therefore, the dynamic
behavior of the secondary manipulator is expressed in terms of
linear transfer function matrices, not to simplify the problem, but
because of the nature of end-effector operation. Let G and S, be two

1 The input commands to the secondary manipulator can be a set of voltages to
the amplifiers, currents to the servo valves, or a set of numbers to the computer.



transfer function matrices that define the velocity deviation from
zero of the secondary manipulator's endpoint.

X [Jow)= 6ljw) elJw) +Sp{Jew) djw) )
»yhere:
X: nx1velocity vector of the secondary manipulator's endpoint

in a coordinate frame attached to the last link of the primary
manipulator

nx1 input velocity vector

nx1 force vector acting on the endpoint :
closed-loop velocity transfer function matrix from the input
velocity vector, e, to the endpoint velocity, X

closed-loop sensitivity transfer function matrix from forces,
d, to the end point velocity, %

the degrees of freedom of the secondary manipulator.

The type of velocity controller used is not important at this
stage. Generally, systems with velocity controllers are not infinitely
stiff in response to imposed forces (disturbances), d. The motion of
the secondary manipulator's endpoeint in response to imposed forces
is caused either by structural compliance in the secondary
manipulator or by compliance in the velocity controller. For a
"good" velocity controller, S, is “small"2. Non-direct drive
systems with large gear ratios develop "small" sensitivity to
imposed forces.

3. DYNAMIC BEHAVIOR OF THE ENVIRONMENT
If one point on the environment surface is displaced as much
as Y, the force required for such a task is defined by f (Figure 2).

flw) = E(Jw) yljw) 2)

E(Jew] is a square transfer function matrix that maps the amplitude
of the displacement vector, y, to the amplitude of the contact force, f.
Validation of equation 2 can be achieved by analyzing the
relationship of the force and displacement of a spring as a simple
model of the environment. E is the spring stiffness. (Hereafter, the
argument (Jw]) is dropped.) The relevant directions of the
environment dynamics are those that constrain the workspace of the
secondary manipulator. Therefore, E is an nxn matrix. E is a
singular matrix when the robot interacts with the environment only
in some directions. For example, in sliding on a frictionless
surface, the secondary manipulator is constrained by the
environment only in the direction normal to the surface.
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Figure 2: When the base of the secondary manipulator is moved
as much as X, its endpoint moves as much as x relative to its

base such that y = X+ X.

4. THE ARCHITECTURE OF THE CLOSED-LOOP SYSTEM
Suppose the secondary manipulator, described by dynamic
equation 1, is in contact with an environment given by equation 2.
The block diagram of Figure 3 shows how the two systems interact
when they are in contact. Note that f=-d. The secondary
manipulator motion relative to its base (i.e. the last link of the

2 "Small" means that the maximum singular value of the matrix is a small
number. This concept can be extended to express the "large” size of a matrix
using its minimum singular vaiue. See footnote 4 for a definition on singular
values.
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primary manipulator) is represented by ». If the motion of the
secondary manipulator base in a global Cartesian coordinate frame
is characterized by a vector %, then the absolute motion of the
secondary manipulator endpoint, y, is X,+%x. When the secondary
manipulator is in contact with the environment, the primary
manipulator must not be maneuvered aleng those directions in
which the secondary manipulator has no degrees of freedom. Thus,
the vector x, must be in the workspace of the secondary manipulator

and is an nx1vector.
° 1.
X0

e

) 1]
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Figure 3: Dynamic Behavior of the Secondary Manipulator in
Contact with the Environment. The Laplace operators of the
transfer functions have been eliminated in all the block diagrams.

Figure 4 shows the proposed closed-loop control architecture
for producing secondary manipulator compliancy3. The position
deviation of the secondary manipulator is fed back to the system via
the compensator K, a transfer function matrix that operates on the
endpoint position. This creates a regulator controller for the
secondary manipulator around its nominal configuration. This
system has an "inner" loop and an "outer” loop. The "inner" loop is
the "natural” feedback between the contact force and the
environment. The "outer" loop is the controiled feedback. When the
secondary manipulator is not in contact with the environment, the
closed-loop system reduces to the "outer" loop. This is a simple
closed-loop positioning system with an input position command
equal to zero.
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Figure 4: The Closed-loop Architecture

If the secondary manipulator's base is moved by X, and the

secondary manipulator encounters the environment (see Figure 2),
the contact force can be computed from equation 3.
f=[1+E(81+GKyT" STTE %, 6))
In most manipulation tasks such as deburring or grinding, the robot
manipulator contacts very stiff environments where E is "large”.
When E approaches infinity in the singular value sense, the
interaction force between the secondary manipulator's endpoint and
the environment is given by equation 4.

3In some applications, the endpoint will only apply a unidirectional force to the
environment. For example, in robotic grinding, the manipulator can only push
the tool into the surface. If we consider a positive f) for "pushing” and a negative
f; for “pulling", the active end-effector and the environment are then in contact
with each other along those directions where f;» O for i=1,...,n. On the other
hand, in some applications such as screwing in a bolt, the interaction force can be
positive and negative. This means that the active end-effector can have clockwise
and counterclockwise interaction torque. The nonlinear discriminator block
diagram in Figure 3 is drawn with a dashed line 10 iliustrate the above concept.
Note the natural feedback in the system; the force developed in the system due to
the interaction of the active end-effector and the environment affects the active
end-effector motion in a feedback fashion.



f= ST (sI+6GKplx, @)

This equation calculates the contact force on the environment when
the secondary manipulator base moves towards the environment as
much as X,. Given G and S, over a particular frequency range, a
compensator Kg can be found to arbitrarily shape the system
impedance, S, (s 1+G Kp).- Under DC conditions where s= 0 and
G= I, the stiffness of the system is expressed by equation 5:

f= 8,71Kp(0) %, 5)
where X, is the base position determined by the position of the
primary manipulator. When Kp is a transfer function with a large
magnitude in a particular direction, the contact force is large in that
direction, while a small value for Kp leads to a small force.

5. STABILITY

In this section, a sufficient stability condition is given for the
closed-loop system shown in Figure 4. By satisfying this condition,
the designer can select the appropriate compensator Kp which
guarantees system stability and develops compliancy as defined by
either equality 3 or 4. The Multivariable Nyquist Criterion is used to
derive the stability condition in Appendix A. The sufficient
condition for stability is given by inequality 6:

Smax(GKp) € omin(sI+S,E) for all we(0,00) (6)
or by a more conservative condition in inequality 7:
cmax(Kp] < 1 + for all we(0,00) [¢))]

Umax I UmaxiD1T ook

where 0n,, indicates the maximum singular value? of a matrix.
The above condition guarantees stability of the robot when it is in
contact with the environment. If the compensator Kp does not satisfy
this condition, no conclusion can be made about the system stability.

When n=1, the sufficient condition for stability is given by
inequality 8.
| GKp I¢ [8+S,E | for all we(0,00) 8

Since G=1 within (0,0,), where @, is the velocity controller
bandwidth, the sufficient condition is:

| Kol <1 s+S,E | for all we(0,w,) 9)

One important class of manipulations places the robot in
contact with a very rigid environment. Equations 7, 8, and 9 show
that the system is always stable if E is very "large" in the singular
value sense and S,# 0. In this case, the gain of the feedback
compensator K, can be chosen to be large enough to guarantee
stability. Note that, in practice, K; cannot be chosen as an integrator
because an integrator has an infinite magnitude at DC which leads
to saturation and unboundedness of the contact force when an
infinitely rigid constraint is imposed on a serve system.

When the environment is infinitely rigid, a large stability
range gives the designer freedom to shape the force function without
being confined by the stability condition. This is the advantage of
this compliance control method in comparison with methods that use
force sensors.

6. AN EXPERIMENTAL PROTOTYPE ACTIVE END-
EFFECTOR AND ITS DYNAMIC MODEL

To verify the applicability of this control method, a two-
degree-of-freedom active end-effector is mounted on an industrial
robot as the secondary manipulator to generaie redundancy in the
robot's degrees of freedom. Several experiments are presented to

4The maximum singular value of a matrix Kp, Omax is defined as:
Kp2

Ot = s G2

where Z is a non-zero vector and{. | denotes the Euclidean norm.
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verify the theory developed in the previous sections. The device
utilized for these experiments is a planar, five-bar linkage {51 which
is driven by two direct drive, brushless DC motors (Moog Inc., Model
303-002). Both of the active end-effector motors are fixed to the last
link of the primary manipulator (Figure 5). Two PWM amp]iﬁgrs
(Moog Inc., 152-200 Series) interface the motors to the analog velocity
controllers. An IBM/AT microcomputer is the main controller
providing the compensator K,,.
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Figure 5: The Active End-Effector

Figure 6 shows the active end-effector mechanism where the
endpoint can be moved in a planar space via two motors. The end-
effector operates in the neighborhood of the configuration shown in
Figure 6, where all the links are orthogonal to each other. In this
configuration, both the Inertia matrix and the Jacobian matrix are
constant and diagonal [1]. This leads to an uncoupled dynamic
equation for the active end-effector at its nominal configuration,
enabling motor 1 to move the endpoint in the x, direction and motor 2
to move the endpoint in the x; direction.

Motor 1

Motor 2

s

- 2
= (@) 3
tangentia ? o
direction At the xiommal position:
Xy 6, =90
]
normal €5 =90
direction € .= 180°

Figure 6: The Active End-Effector at its Nominal Position

The control analysis in previous sections requires a velocity
controller as the lowest level of control. Since, the dynamic behavior
of the active end-effector is uncoupled in its nominal configuration,
separate control loops are needed for each motor. Motor 1 drives the
endpoint in the normal direction while motor 2 drives the endpoint in
the tangential direction. The Jacobian matrix relating the small
perturbations of 6y and 6, to the perturbations of x; and x5 is given
by the following equation [5].

J = [-1.768 0 ]
= 0 -0.906

Using engineering data (inductance and resistance, shaft and links
moments of inertia, and torque constants for the servo motors {2]), the
theoretical closed-loop transfer function for each motor is derived in
equations 11 and 12. The choice of compensators in the development
of the closed-loop velocity controller is not of importance in this
analysis. However, these compensators are designed so that the
output velocity follows the input command as fast as possible while

(10)



the system remains stable in the presence of all unmodeled
dynamics. These transfer functions are called G'4(s) and G';(s)
because they are calculated and measured in the joint angle space.
Using the Jacobian in equation 10 results in equations 11 and 12
which present the closed-loop velocity in the global coordinate
frame.

v (52—
6'y(s) = —2L_ g 8.86 olts
ie) Vit - 08%® { e 1 e s 1] (e s m)‘“’
964.26 * 37103 " V5550858 " 35737
v (=2=21)
e o Mowt2 6.66 Volts
Galel = GOt =134 — TR - (———v‘,m) az
936 " "'3.68 " 18739375 "Tza.67 "
Where:
Vintand Vj,2 @ the input velocity command for each motor shaft in
Volts

Vout1 and Vout2: the output voltage representing the angular
velocity of each motor shaft. One volt of tachometer output represents
0.0191 rad/sec of the shaft angular velocity.

The closed-loop transfer functions 11 and 12 are verified
experimentally in the frequency domain. Figures 7 and 9 show the
theoretical and experimental Bode plots of the closed-loop velocity
transfer functions for both motors.
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Figure 7: The Experiment and Simulation of the First Motor's
Closed-loop Velocity Transfer Function, G’;(s).
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Figure 8: The Experiment and Simulation of the Second Motor's
Closed-loop Velocity Transfer Function, G';(s).

The theoretical sensitivity transfer functions for motors 1 and 2 are
derived in equations 13 and 14 using the data from the engineering
drawings. The notations S'yi(s) and S'y(s) represent the

sensitivity in the joint coordinate frame as opposed to S,(s) and
So2(8) in the global Cartesian coordinate frame. Later, the
Jacobian of equation 10 will be used to arrive at the sensitivity
functions in the global coordinate frame.

8 8
o (o) 8, 177555+ Ngg+ 1) d sec!
oil8l= 3= s s 2 s (h;bfin )(13)
(56228 3705 * Vi5ge72 7555 "
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ad sec”!
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536" V3575V zzas 5652 Y
where:
S'01(s) and S'gy(s): closed-loop sensitivity transfer functions
from the external torque, Ty, and, T, to the angular velocity, 8,and
6,.
81and 6,: the velocity developed on the ith motor
Tiand Ta:  the external torque applied on the ith motor shaft.

To verify experimentally the sensitivity of the closed-loop
velocity control system to external torques fequations 13 and 14), the
apparatus in Figure 9 is used. An eccentriz mass is mounted on the
tool bit. The input excitation is supplied by the rotation of this mass.
The rotation of the mass generates a sinusocidal torque disturbance at
the corresponding motor shaft with a frequency equal to the
frequency of the rotation of the mass. Figures 10 and 11 show the
Bode plots of the theoretical and experimental sensitivity transfer
functions.
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Figure 9: The Experimental Apparatus for Measuring the
Sensitivity Transfer Function
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Figure 10: Sensitivity Transfer Function for Motor 1, S'°|(s)‘
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Figure 11: Sensitivity Transfer Function for Motor 2, Slog(s).
7. COMPENSATOR DESIGN

After the closed-loop velocity transfer functions and the
sensitivity transfer functions are determined, the position
compensators, Ky and K5, for each motor are designed. Since the
active end-effector is used with a very hard environment, the system
is stable for a wide selection of Kp1 and Kpz, in accordance with the
results given in section 5. Kpy and Kpz are chosen using equations
15 and 16.

Kpils) = 30 L as
——i1
4.
S
—
Kpzls) = 502 &2 a6)

The choice of Kp1and Ky, depends on the desired system
impedance as defined in equation 4. The selection of a specific K4
and Kpz enables the designer to shape the magnitude and bandwidth
of the active end-effector impedance. The transfer functions in
equations 15 and 16, for example, yield a flat impedance (equation 4)
for a wide frequency range.

When the base of the active end-effector is moved by X,
towards the environment in the global coordinate frame, the contact
forces (equation 4), are equal to that given by equation 17 :

S*G]K 1 S+ GzK 2
fy = _S:L %ot and fy = —S—o-z—L- Xo2 Qa7

Note that X1 and X, are the inputs to the system and the contact
forces, fy and fy, applied on the environment by the active end-
effector are the outputs of the system. By assigning different position
commands to the base of the active end-effector and by maintaining
complete control on K and Kpz in equation 17, a designer can keep
the contact forces in a desired range. Also note that the active end-
effector behaves like a system that accepts a set of positions as inputs
and reflects a set of forces as output. This is a fundamental
characteristic of impedance control which differentiates it from
admittance control. Equation 17 will be verified experimentally in
both directions. The frequency response experiment must be carried
out by imposing sinosoidal input positions on the end-effector when it
is in contact with a rigid wall. This requires the precise position of
the active end-effector base, X,y and %,,. However, it is possible to
verify equation 17 with a more convenient method when the active
end-effector is not in contact with any environment.

When the active end-effector is not in contact with its
environment, the relationship between the external force, d, and the
endpoint position of the active end-effector, X, in the global Cartesian
coordinate frame is given by equation 18. (This is the closed-loop
positioning controller sensitivity.)
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X = (sI+GKp)' S,d 18)
Since the active end-effector is dynamically uncoupled around its
nominal position, equation 18 (in each direction) becomes:

Sot q S
s+ G1Kp1 !

X2 =

X ;
g+ GZKpZ

dy 19)
where:
dyand dy: the input excitation force applied at the endpoint of the
active end- effector along the Xy and X, directions. (1bf)
X1 and Xp: the translational displacement of the active end-
effector's endpoint from its nominal position. (in)
Comparing equations 17 and 19 reveals that, for measuring

S+ GiKp S+ GaKpa .

P Soz (given by equation 17), one can use the
same experimental set-up (Figure 10) employed to measure the

Soy So2 .
57 61Ky and 5+ 62Kp2 (given by
equation 19). In other words, the closed-loop system sensitivity in
response to external forces (equation 19) is measured rather than
measuring the system impedance in constrained maneuvers
(equation 17). In general, for linear systems, the impedance
function is equal to the inverse of the sensitivity function. For the
experimental set-up (Figure 12), the following transfer functions
give the sensitivity of each motor;

closed-loop sensitivity,

6 S'e1(s) 82 S'e2(8) rad
T1 s+ GylsIKp(s] and T2 ~ s+ 6Gals)Kpo(s) (lbfin)zo)

where 8, and 6; are the small angular perturbations of the motor
shafts in the neighborhood of their nominal positions and T, andT,
are the imposed torques at each motor shaft. Using the Jacobian
(equation 10) results in the following equations:

LI 2 91 _ 2 _ S'oi(s) _sin
d - (-1.768} T, < (-1.768) G~ G1[s)Kp1[s]] (]bf) (21)
X2 _ 2 62 ~ 2 S'e2(s) in
_d2 = (~0.906) _Tz = {-0.9086) _-[s " Gz(_S]Kp2[S]] (_lbf)(zz)

where d; and d; are the forces applied at the active end-effector's
endpoint. An experiment is run to measure the active end-effector's
endpoint sensitivity (equations 21 and 22.) The known or available
quantities for measurement are: i) the excitation force (the
centrifugal force due to rotating) and ii) the angular position of the
motor shaft which is eventually converted into the active end-
effector's endpoint displacement. The experimental data and the
theoretical simulation of the endpoint sensitivity are presented in
figures 12 and 13. With the appropriate selection of Kpils) and
Kp2(s), the designer can shape the magnitude and bandwidth of the
desired target impedance. The plots in Figures 12 and 13 show that
the sensitivity in the normal direction (»4) is larger than the
sensitivity in the tangential direction (x;). However, the
architecture of the active end-effector in Figure 8 shows that the
system naturally has a larger inertia (and consequently, smaller
pen-loop sensitivity) in the X, direction. This shows that one can
shape the impedance of the system arbitrarily so the system, in the
closed-loop form, has an impedance dramatically different from its
natural openJoop impedance. The strength of this alteration in the
impedance magnitude and bandwidth is limited by the unmodeled
dynamics in the system [4].

SUMMARY AND CONCLUSION

This paper describes a contrel method for development of
compliant motion without using any force sensors. This control
method benefits from redundancy in the robot degrees of freedom:
the extra degrees of freedom in a particular robotic system can
impose forces on the environment. The stability of the system and
the environment is studied and a sufficient condition for stability is
derived.
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Figure 13:

APPENDIX A

The objective here is to find a sufficient condition for the
stability of the closed-loop system shown in Figure 6 by using the
Multivariable Nyquist Criterion [8]. Equation Al can be derived
from Figure 6:
x= - (81+S,E+GK,) 'S, E %, (A1)

If Ky= O, the block diagram shown in Figure Al reduces to
the system in Figure 5, which is a stable velocity-controlled active
end-effector in contact with its environment.

L(s- 1)1+ E+GK , [—

Modified Block Diagram of the Closed-loop Control
System.

v

Figure Al:

Assume the following conditions are satisfied: )
1) The closed-loop system in Figure Al is stable if Kp=0. This
condition simply states the stability of the system in Figure 5.

2Kpis a stable linear transfer function matrix. This implies that
the number of unstable poles of (s-1)1+S4E+GK, should be equal to
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the number of unstable poles of {s-1)1+S,k.
3) The number of poles on the jw axis of loops (s-1)I+SoE+GKy and
(s-1)1+S,E are equal. This condition states that K, should not have
any pole on the Jw axis.

Since the system in Figure Al is siable when K;=0, deriving
a sufficient condition for stability of the closed-loop system requires
investigation of the influence of GKp. According to the Nyquist
Criterion, the system in Figure Al remains stable if the clockwise
encirclement of det{sI+S,E+GKp) around the center of the s-plane
is equal to the number of unstable poles of the loop transfer function
(s-1)1+SoE+GK,. Taking into account condlitions 1, 2 and 3, for the
stability of the closed-loop system, det(sI+SE+GKp) must have the
same number of encirclements around the center of s-plane that
det{sl+S,E) has. This is true because det(sl+S,E+GK,) and
det(sl+S.E ) have the same number of unstable poles. A sufficient
condition which guarantees the equality of the number of
encirclements of det(sI+S,E+GK,) and det(sI+S.E)is that the
det(sl+S,E+GKp) does not pass through the origin of the s-plane for

all possible non-zero finite values of K, or:
det(sI+S,E+GKp}20 for all we(0,00) (A2)

A sufficient condition that guarantees the above inequality is:

Omax(GKp) € Omin(s1+S,E)  for all we(0,00) (A3)
or more conservatively:
Omax(Kp) € ! forall 0e(0,00)  (Ad)

Omaxt(81+S,E}1G)
and for systems with one degree of freedom (n=1), the sufficient
condition for stability is given by:

16Ky 1< |5+S,E | for all we(0,90) (A5)
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